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Outline 

• Production of Ion Beams 

• Basics of Ion-Solid Interactions 

  I: Ion Beam Analyses 
     - Rutherford Backscattering Spectrometry 

 - Elastic Recoil Detection 

 - Medium Energy Ion Scattering 

 - Research Examples: interfacial analysis of complex oxide thin film 
stacks; diffusion and oxidation processes with sub-nm resolution 

 

• Conclusions  

• References 

II: Ion Beam Modification 
 - Implantation 

 - Research Examples: formation of Si and Ge quantum dots 
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Tandetron Ion Scattering facility at UWO 
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Rutherford Backscattering (RBS) and Medium Energy Ion Scattering (MEIS) 

Elastic Recoil Detection (ERD) 

Nuclear Reaction Analysis (NRA) 

Particle-Induced X-ray Emission (PIXE)  

Various implantation capabilities… 
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Tandetron operating principle 

(1)  Begin with negative ions via sputtering for most species 

(2)  Accelerate to kinetic energy = qVt where Vt = terminal voltage (MV) 

           and qi = -1 so that Et ≡ Vt [MeV] 

 (3)  Ions traverse a stripper gas at the high voltage terminal to produce 

            a charge state distribution of positive ions 

 (4)  Accel/decel mode is available when the stripper gas is OFF:  used 

            for Eion≤100 keV and the incident ions then have qi = -1 
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Inside Tandetron… 
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Ion Beam Analysis 
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(1) elastic scattering  

 Rutherford Backscattering 

 

(2) fast recoils arising from elastic 

scattering 

 Elastic Recoil Detection 

 

(3) steering effects due to the crystalline 

structure of target atoms (channeling)  

 

(4) inelastic processes: energy loss as a 

function of depth 

 

(5) X-ray emission (PIXE) and nuclear 

reactions (NRA)  

He+, H+ 
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Rutherford Backscattering Spectrometry 

Elastic Collisions! 
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Charged Particle Detectors 

Schematic diagram of the operation 

of a surface barrier detector (SBD) 

• Silicon disc with gold film 

mounted in the detector housing 

•   

• He++ particle is forming holes 

and electrons over its penetration 

path.  

• The energy band diagram of a 

reverse biased detector (positive 

polarity on n-type silicon) shows 

the electrons and holes swept 

apart by the high electric field 

within the depletion region. 

 

9 



4 

Surface Canada 2013 Tutorials, May 11, 2013  

Scattering kinematics: example 1 

2MeV 4He+
, =165o 

Backscattered from 

C, O, Fe, Mo, Au 

31016 atoms/cm2 

each 

on Si substrate 
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Key features of RBS 
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Ability to quantify depth profile of buried species with a 

precision of ~ 3% 
 

Qualitative information: kinematic factor, k 

 

 

 

 

 

Quantitative: scattering cross section, s 
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Scattering kinematics: example 2 

12 
⇒ Decreased mass resolution for heavier elements 
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Rutherford Cross Section 

• Neglecting shielding by electron clouds 

• Distance of closest approach large 

enough that nuclear force is negligible 

 Rutherford scattering cross section 

 

 

 

 

 

 

Note that sensitivity increases with: 

• Increasing Z1 

• Increasing Z2 

• Decreasing E 
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RBS spectra from thin and thick films 
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Ion dose (fluency), solid angle, cross section  

 Ion dose (fluency), the number of incident particles (collected charge) 

 - measured by Faradey cup 

 - Q = I  t 

 

 Solid angle, in steradians, sr 

 - stays constant for a particular detector/detector slit 

 - need to be verified by the calibration standard measurements 

 

 

 Cross section (or differential cross section), in cm2/sr of the element 

 - well known (tabulated) in Rutherford cross section regime 
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Areal density: note about units 

Areal density =  t  [g/cm2],  

where   = g/cm3,  t = cm 

N0  t 

M 
[at./cm2] 

where  M = atomic mass [amu],  N0 = Avogadro’s number 

In absolute numbers – close to thickness in Å 
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Thickness measurement 
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RBS Spectrum of a thick film 

• Target is divided into thin sublayers (“slabs”) 

• Calculate backscattering from front and back side of each sublayer taking 

energy loss into account 

• For each isotope of each element in sublayer 
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Stoichiometry 

2MeV 4He+, backscattered from ceramic films on Si substrate 
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Use crystal structure of the substrate 

• Substrate can be aligned to a major crystallographic direction to minimize 

background signal in some cases 
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Elastic Recoil Detection (ERD) 

Heavy Elements by MEIS or RBS 

Light Elements by Elastic Recoil Detection 

Detector 

Light elements (He+ or H+) 

Detector 

He+ 

H+, He+ “Classical” ERD 

Incident energy = 1.6MeV He+ 

Incident angle = 75o 

Recoil Angle = 30o 

Al-mylar (range foil) 
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ERD Principles and Limitations 
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Some advantages of ERD:  

good dynamic range;  

excellent hydrogen sensitivity;  

very well suited for analysis of light elements 

Some disadvantages:  

Resolution (limited by detector, ~10-15keV); 

sensitivity to surface contamination 
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RBS  plus ERD  Full Stoichiometry!!! 

RBS and ERD results for VSxOyCz:H 

 
Assumption: ~ 900Å V0.03S0.03O0.25С0,44H0.25/(bulk) V0.03S0.03O0.13С0,44H0.37 
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A comparison between RBS and MEIS 

2 basic advantages vs. RBS: Often better dE/dx, superior detection equipment 

 

Close to maximum of ~ 14 eV/Å at ~ 100 keV! 

This helps, but the greater advantage is the 

use of better ion detection equipment! 
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Medium Energy Ion Scattering (MEIS) 
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• mass (isotope) specific 

• quantitative (2% accuracy for high-Z) 

• depth sensitive (at the sub-nm scale) 

Energy distributions: 
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MEIS analysis of as-deposited films 
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Basic concept:  Depth profile is based on the energy loss of the ions traveling 

through the film (stopping power   dE/dx).   

 

Example:   Depth resolution for 95 keV protons 

With MEIS spectrometer 180 eV vs RBS detector 15keV 

 

Stopping power  SiO2   12 eV/Å;    Si3N4   20 eV/Å;     

 

Depth resolution and concentration profiling 
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Oxidation temperature dependence: 16O and 18O  
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Oxygen diffusion in oxides 
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SiO2 films: 

• amorphous after annealing 

 

• molecular O2 transport in SiO2   

 

• decomposition by SiO desorption 

Si-substrate 

Atomic oxygen (O) transport in metal oxide films 

SiO2 growth, 

O-exchange  

at interface 

O-diffusion and  

exchange in bulk  

of oxide 

MOx 

O2 decomp. 

at surface 

O2 O Si-substrate 

O-exchange  

in surface 

 layer 

SiO2  

growth 

at interface 

Oxygen (O2) transport in SiO2 

O2 

(Many) metal oxide films: 

• tend to crystallize at low T 

 

• atomic O transport  in the film 

 

• high oxygen mobility 
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Diffusion and interface growth in HfO2 and 

HfSiOx ultrathin films on Si(001) 

31 

L.V. Goncharova, M. Dalponte, T. Feng, et al, PRB 83 (2011) 115329 

• Faster interfacial SiO2 growth in case of high-k 

oxides in comparison to the SiO2 thickness 

growth for bare Si 

T (oC) Time (min) Oxide growth 

(Å) 

 

 

High-k 

700 30 11 

800 30 18 

950 30 25 

 

 

 

SiO2
* 

 

750 

165 5 

2640 10 

 

900 

60 10 

1860 27 

*Gusev, Lu, Gustafsson, Garfunkel, PRB 52 (1995) 1759. 
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Part II: Ion Implantation 

• Implantation chamber and implantation stage 
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Periodic Table 

• We can produce beams of all those elements shown in yellow ! 
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Ion Implantation 
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Si- ions 

aperture 

i ≤ 4 μA 

SiO
2 

(e.g.  

area = A = 1.13 cm2) 

Dose = i Δt / A (ions/cm2) 

(from 

Tandetron) 

(raster beam in X,Y) 

S
u
b

s
tra

te
 

(@ 25-2,000keV) 

X 

Y 

sweeping 
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Stopping and Range of Ions in Matter (SRIM) 

http://www.srim.org/ Download SRIM-2008 
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SRIM Setup Window 

http://www.srim.org/
http://www.srim.org/SRIM/SRIMLEGL.htm
http://www.srim.org/SRIM/SRIMLEGL.htm
http://www.srim.org/SRIM/SRIMLEGL.htm
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Calculated Ion Trajectories 
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2MeV He+ in Si 50keV He+ in Si 50keV Au+ in Si 
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Ion-implanted Si and Ge quantum dots in dielectrics 

• Second generation Si and Ge photonics 

• Strong light emission from nanocrystals or quantum dots (QD) by 

reducing the size of Si to < aBohr (Si  ~3-5nm; Ge ~ 24nm)  

• Porous Si and crystalline QW 

• Bonafos et al. used TEM to relate Si QD to excess Si (10, 20, 30%) 

 

 

Cho et al, JAP 2007 Bonafos et al, NIMB (2001) Barbagiovanni et al, MRS (2009) 
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Si(001) 

SiO2 

Si ions 
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Growth of Si-QD 

• RT Implantation Si- (Ge+) 90keV 5x1016 -1x1017ions/cm2 

• 120min @11000C (Si) or 9000C (Ge)  in furnace,  

• 60 min @5000C in N2/H2 gas 

 

• Early stage of formation governed 

 by diffusion 

 

 

• Eventually Ostwald ripening 

)(4
solSi

Si
CCrND

t

C







Link between defects in the 

SiO2 and formation of Si-QDs 

Mokry C.R., Simpson P.J., Knights A.P. J. Appl. Phys. 105 (2009) 114301 
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Ge in Al2O3(0001): crystallization and ordering 

E.G. Barbagiovanni, S.N. Dedyulin, P.J. Simpson, L.V. Goncharova, NIMB 272 (2012) 74–77 
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XPS  

• Shift of Ge peak towards the surface (RBS) 

• GeOx peaks in XPS   Ge loss via GeO desorption 

41 

Ar sputtering prior to XPS analysis:  

Ge layer is 3-5nm deep 

Al2O3(0001) 

GexO 

disordered Al2O3 

Tx>1100oC 

 

N2 Al2O3(0001) 

Ge-QD 
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Cross-sectional TEM micrographs 

• Contrast arising from stress 

fields and end of range 

implantation damage 

• Moiré fringes become visible 

from the overlap of the 

crystal planes of Ge QD and 

the sapphire matrix 
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Ge in Al2O3(0001): crystallization and ordering 

I.D. Sharp, Q. Xu, D.O.Yu, et al. JAP 100 (2006) 114317 

• Slow diffusion rate of the alumina matrix atoms at < Tmelt 

• Ge blocking minimum can be related to the stereographic projection of the 
sapphire crystal and corresponds to the [111] scattering plane:  
 

(1104) Al2O3 // (111)Ge    and    [211] Al2O3 // [112] Ge 
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Conclusions and future directions: 

• Ion Beam Analysis is an enabling technology for thin film 

scientists and engineers 

 

• Our goals are to initiate collaborative research projects 

and stimulate multidisciplinary interactions, To enable 

the use of ion beams, including the introduction of ion 

beam methods to new discipline areas 

 

• Development of novel ion beam analyses techniques 
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Elastic recoil detection for negative ions 

Crucial points for detecting H ion 

recoils directly are: 

• To increase the recoil cross-section 

• To reduce (to suppress) the 

background originating mainly from 

elastically scattered incident ions 

Toroidal Ion Energy Analyzer (HVEng, Amersfoort, 

The Netherlands)  

V- 

V+ 

MEIS 

V- 
V+ 

ME-ERD 

Only charged particles are detected 

by TEA  

 use incident beam ions without 

negative ion fractions and detect 

negative H- recoils 

X+ H+,H, H- 
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Control QD Distribution with Mask 
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Si QD nucleation and growth by Si ion implantation and anneal   

Lateral separation between implanted regions 
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Thank you! 
Lyudmila V. Goncharova 

Department of Physics and Astronomy,  

Western University, London, Ontario 

lgonchar@uwo.ca 


