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Tandetron lon Scattering facility at UWO
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Rutherford Backscattering (RBS) and Medium Energy lon Scattering (MEIS)
Elastic Recoil Detection (ERD)

Nuclear Reaction Analysis (NRA)

Particle-Induced X-ray Emission (PIXE)

Various implantation capabilities...
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Tandetron operating principle

(1) Begin with negative ions via sputtering for most species

(2) Accelerate to kinetic energy = qV, where V, = terminal voltage (MV)
and ¢; = -1 so that E, =V, [MeV]

(3) lons traverse a stripper gas at the high voltage terminal to produce
a charge state distribution of positive ions

(4) Accelldecel mode is available when the stripper gas is OFF: used
for E;,,<100 keV and the incident ions then have q; = -1
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Inside Tandetron...
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lon Beam Analysis

Her, i@ ®

(1) elastic scattering
= Rutherford Backscattering

(2) fast recoils arising from elastic
scattering
= Elastic Recoil Detection

(3) steering effects due to the crystalline
structure of target atoms (channeling)

(4) inelastic processes: energy loss as a
function of depth

(5) X-ray emission (PIXE) and nuclear
reactions (NRA)
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Rutherford Backscattering Spectrometry
Elastic Collisions!
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Charged Particle Detectors

Schematic diagram of the operation ~ Au-surface mee\u:leur particle defector

of a surface barrier detector (SBD Au loyer—_ —

« Silicon disc with gold film 2 :
mounted in the detector housing 7// B ///
Z,

i depletion region

* He++ particle is forming holes

and electrons over its penetration housing L ¢_output connection
path. et fmtoctess

« The energy band diagram of a N
reverse biased detector (positive Er

polarity on n-type silicon) shows
the electrons and holes swept

apart by the high electric field “Er
within the depletion region.

nduction band

l=——depletion—={ “-volence band
region

S
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Scattering kinematics: example 1
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Key features of RBS

Ability to quantify depth profile of buried species with a
precision of ~ 3%

Qualitative information: kinematic factor, k
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Scattering kinematics: example 2

Energy [keV]
- Au H
™ 197, 201
2 Baxi |
§ oo Au | Hg
8 am 1971201
|
c o ‘ cr Fe
. 12 16 AR 56
CrFe “
o 5256 |

Channel

ecreased mass resolution for heavier elements N
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Rutherford Cross Section

+ Neglecting shielding by electron clouds
« Distance of closest approach large

enough that nuclear force is negligible
= Rutherford scattering cross section
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Note that sensitivity increases with:
* Increasing Z,
* Increasing Z,

« Decreasing E
———————
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RBS spectra from thin and thick films

Q sor
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The integrated peak count A, for each
element on the surface can be
calculated using this equation:

vt 11 TED) =

 detector aperture

cosd e T e
where :5
(Ni),is areal density, atoms per unit Pt
area;

Q- ion beam fluency;

£2- solid angle of the detector;
ofk, B)/cos O cross section of an
element
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A
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lon dose (fluency), solid angle, cross section

» lon dose (fluency), the number of incident particles (collected charge)
- measured by Faradey cup
-Q=1lxt

» Solid angle, in steradians, sr
- stays constant for a particular detector/detector slit
- need to be verified by the calibration standard measurements

» Cross section (or differential cross section), in cm?/sr of the element
- well known (tabulated) in Rutherford cross section regime

S
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Areal density: note about units

Areal density = p t [g/cm?],

where p=glcm3, t=cm

Nopt
— OTP [at./cm?]

where M = atomic mass [amu], N, =Avogadro’s number

In absolute numbers — close to thickness in A
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Thickness measurement
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RBS Spectrum of a thick film

« Target is divided into thin sublayers (“slabs”)
Calculate backscattering from front and back side of each sublayer taking
energy loss into account

For each isotope of each element in SLrl:lzlayer

S
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Energy [keV]

Stoichiometry

SO 60 0 w0 o0 00 110 1200 10 140 50 10 70 10

s /\

2MeV “He*, backscattered from ceramic films on Si substrate
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lon channeling and blocking
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« Substrate can be aligned to a major crystallographic direction to minimize
background signal in some cases
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Elastic Recoil Detection (ERD)

Heavy Elements by MEIS or RBS ~150nm SiONH/Si(001)

—+— Kapton|
——1034
——1051
—— 1085

1001
—— 1097

200
Detector

Light elements (He* or H? w /gﬁum
L

Light Elements by Elastic Recoil Detection

Vield
g

200 250 300 350 400 450 500 550 600

Detector Energy [kev]

H* He* “Classical” ERD
Incident energy = 1.6MeV He*
Incident angle = 75°¢

Recoil Angle = 30°

He+ V Al-mylar (range foil)
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ERD Principles and Limitations

M,
M, ! Scattered ion
E,-kE, E‘ Target
4M JM 2 2 T
= Tcos ¢ lon
(M, +M,)
' Recoil
X e Some advantages of ERD:
PR
g 0e s good dynamic range;
& 02 A ‘ excellent hydrogen sensitivity;
& 2 My, very well suited for analysis of light elements
R 1 Some disadvantages:
50

Resolution (limited by detector, ~10-15keV);

RECOIL ANGLE oo . .
* sensitivity to surface contamination
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RBS plus ERD = Full Stoichiometry!!!

Energy kev] Energy [kev]

I

\

\

\
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Channel Y Chama T

RBS and ERD results for VS,0,C,:H

Assumption: ~ 900A V465S0,0500.25C0,42Ho 25/ (BUIK) V,0350,0300.13C0.4sHo.37
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A comparison between RBS and MEIS

00 Y ) s at
Close to maximum of ~ 14 eV/A at ~ 100 keV!
This helps, but the greater advantage is the
use of better ion detection equipment!

RBS MEIS
lon energy ~2 MeV  ~ 100 keV
Detector resolution ~ 15 keV ~ ~0.15 keV
Depth resolution  ~ 100 A ~3A

2 basic advantages vs. RBS: Often better dE/dx, superior detection equipment

Western
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Medium Energy lon Scattering (MEIS)

100keV H* SiO,/poly-Si/ZrO,/Ge(100)

e o5 > 1500 =
Energy distribution (buried)
for one angle
1000
k=]
]
s (sur
50 o o

H" Yield

= _ —»Angular distribution for (buried) (surf

g one element 0

> 77 84 o1
9 Energy [keV]

[}

i

: Energy distributions:

* mass (isotope) specific
* quantitative (2% accuracy for high-Z)
« depth sensitive (at the sub-nm scale)

s 10 15 B0 1% 10
Angle [degree]

26
Surface Canada 2013 Tutorials, May 11, 2013

MEIS analysis of as-deposited films

98keV H*
Sample Alignment:
Si(001) incident; Si(110) outgoing

——as \S‘ Hf
E
8 .
2l Si HfO, 29A
e
£

. . TEM:
104 108 112 116 128 . .
Energy (keV) 2.8nm HfO,/1nm SiO,/Si(001)
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Depth resolution and concentration profiling

Basic concept: Depth profile is based on the energy loss of the ions traveling

through the film (stopping power ¢ « dE/dX). Laver model:

Example: Depth resolution for =95 keV protons " //
With MEIS spectrometer ~180 eV vs RBS detector ~15keV/ L ;j et
- Tz 2
®Stopping power SiO, ~ 12 eV/A;  Si;N, ~ 20 eV/A; 7 gl :M X
L~ .
1547
l i Laer o
Backscattered proton energy spectrum B kevp*
: 20f—
= §1s
B 20: E . 7 si
g §os 210,
K [:\ Si(100) =
02 % 40 s w7
Depth (A)
]
=
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Oxidation temperature dependence: 160 and 180
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‘ O reaction with Si — deeper than N distribution ‘

104 106 108 110 112 114 116 118
Energy (keV)
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Oxygen diffusion in oxides

Oxygen (O,) transport in SiO, Atomic oxygen (O) transport in metal oxide films

O-exchange sio, O-diffusionand SO, growth,
in surface growth 0, decomp. exchange inbulk ~ O-exchange
layer \ atinterface at surface of oxide at interface

Si-substrate Oz _|+0+||Si-substrate

O;
MO,

SiO, films: (Many) metal oxide films:
« amorphous after annealing ‘ « tend to crystallize at low T
» molecular O, transport in SiO, « atomic O transport in the film
« decomposition by SiO desorption « high oxygen mobility

™
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Diffusion and interface growth in HfO, and
HfSiO, ultrathin films on Si(001)

T(°C) | Time (min) | Oxide growth
N *)
700 30 1
e 800 30 18
High-k 950 || 30 25 I
165 5
750 2640 10
] . 60 10
] S0 00 [ 1860 27
£

- « Faster interfacial SiO, growth in case of high-x
“ = oxides in comparison to the SiO, thickness
growth for bare Si

e —
Dspin (4]

L.V. Goncharova, M. Dalponte, T. Feng, et al, PRB 83 (2011) 115329
;- —

bﬁé *Gusev, Lu, Gustafsson, Garfunkel, PRB 52 (1995) 1759. 31
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Part 1l: lon Implantation

+ Implantation chamber and implantation stage

g 32
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Periodic Table

: the periodic table on the world-wide web

» We can produce beams of all those elements shown in yellow !
e

> =
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lon Implantation

aperture S0,
(e.g. :
area=A=1.13 cm?) WE\'}'““
P
Si-ions
(from @2
Tandetron) 3
(@ 25-2,000KeV) g
Dose =i At /A (jons/cm?)
Sl (raster beam i ==
g = 3,,
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Stopping and Range of lons in Matter (SRIM)

http://www.srim.org/ =Download SRIM-2008
SRIM Main J -

5 s, av;q—- ]
N SRS

SLoppilng.and Rangg
irE Viatters

(Contributions by H. Paui, L
c] 184,169,199, 2003, 2006 by J. F. Ziegle.
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SRIM Setup Window

o Dsnsion sk Cokodoion cf Damags

lon Do win Reccd popiad ca ¢ Pl
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http://www.srim.org/
http://www.srim.org/SRIM/SRIMLEGL.htm
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Calculated lon Trajectories

2MeV He*in Si ... 50keV He" in Si 50keV Au* in Si

Depth va. Y-Axis Depth vs. Y-Axis Depth va. V-Axis

W e wen

(wT0us,
Sihcan

g Bopa s
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lon-implanted Si and Ge quantum dots in dielectrics

« Second generation Si and Ge photonics

« Strong light emission from nanocrystals or quantum dots (QD) by
reducing the size of Si to < agy, (Si ~3-5nm; Ge ~ 24nm)

« Porous Si and crystalline QW

« Bonafos et al. used TEM to relate Si QD to excess Si (10, 20, 30%)

) Hrob i .
Barbagiovanni et al, MRS (2009) Cho et al, JAP 2007 Bonafos et al, NIMB (2001)
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Growth of Si-QD
» RT Implantation Si (Ge*) 90keV 5x10%6 -1x107ions/cm?
» 120min @1100°C (Si) or 900°C (Ge) in furnace,

+ 60 min @500°C in N,/H, gas _

£
« Early stage of formation governed ;SE . E
by diffusion i H
38 4 a
acy ] g
—=L- —4zmMD (C, -C_,) ] @

! 5

« Eventually Ostwald ripening =

Link between defects in the
SiOZ and formation of Si-QDs

O 39
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Ge in Al,04(0001): crystallization and ordering
Ge Peak in Random Geomelry
Encrgy (keV)

280 300 320 340 360 380 400 420 Allgned Geooeury

_120 = [ronm@iDepin o
: As-Implanted 3
: ARG, < As-lmpl
Ge = | ook
30 min ~
60 min
SI80 min &,
3 i  Surface
4 Al Surface <o TR W
% 10 " ¥ »
Al Sub-Surface™ / * 1.
500 550 600 650 700 750 400 450 500 550 600 650 J700] 750
Channel Channel

Sample (min) Concentration (10" em %) Crystalline Factor

As-lmplanied 9.67 0
0 6.68
60 335 0.55

120 117 055

150 1 0s

b*é E.G. Barbagiovanni, S.N. Dedyulin, P.J. Simpson, L.V. Goncharova, NIMB 272 (2012) 74-77

A4
Western Surface Canada 2013 Tutorials, May 11, 2013

XPS Sample (min) Concentration (x 10! em~?)  Crystalline Factor
As-Implanted 9.87 o
30 6.68
60 335 055
120 117 0.55
180 163 05
3
1 ko, > o
] T,>1100°C @® o=
: oo ==
disordered Al,O3 N, Al,04(0001)
Al,0,4(0001)

L]
Fimbing Fnepy (V)

me 1w
Ar sputtering prior to XPS analysis:

Ge layer is 3-5nm deep

+ Shift of Ge peak towards the surface (RBS)

* GeO, peaks in XPS = Ge loss via GeO desorption
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Cross-sectional TEM micrographs

r (a)

fields and end of range
implantation damage

+ Contrast arising from stress + Moiré fringes become visible

from the overlap of the
crystal planes of Ge QD and
the sapphire matrix
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Ge in Al,04(0001): crystallization and ordering

« Slow diffusion rate of the alumina matrix atoms at < T,
+  Ge blocking minimum can be related to the stereographic projection of the

sapphire crystal and corresponds to the [111] scattering plane:
(1104) Al,O4 // (111)Ge and [211] Al,O5 // [112] Ge
™)
1.D. Sharp, Q. Xu, D.O.Yu, et al. JAP 100 (2006) 114317
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Conclusions and future directions:

* lon Beam Analysis is an enabling technology for thin film
scientists and engineers

» Our goals are to initiate collaborative research projects
and stimulate multidisciplinary interactions, To enable
the use of ion beams, including the introduction of ion
beam methods to new discipline areas

+ Development of novel ion beam analyses techniques

D ———
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Elastic recoil detection for negative ions

chrge dividing collector S

Crucial points for detecting H ion

/ﬁk recoils directly are:

% macchuselplies o TO jncrease the recoil cross-section
* To reduce (to suppress) the

background originating mainly from

Sasle

dectons &

h(',E-ERD elastically scattered incident ions
\4 Only charged particles are detected

eptuznce shi by TEA

.

= use incident beam ions without
MEIS negative ion fractions and detect
Z sample negative H- recoils

100 beam - H*H, H
Toroidal lon Energy Analyzer (HVEng, Amersfoort,
The Netherlands)
e —————————
& "
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Control QD Distribution with Mask

Si QD nucleation and growth by Si ion implantation and anneal =

Lateral separation between implanted regions
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Thank you!

Lyudmila V. Goncharova
Department of Physics and Astronomy,
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